

WRF/WateReuse Webcast

Advancing the Seawater Desalination Knowledge Base

March 14, 2019

© 2019 The Water Research Foundation. ALL RIGHTS RESERVED. No part of this presentation may be copied, reproduced, or otherwise utilized without permission.

Housekeeping Items

- Submit questions through the question box at any time! We will do a Q&A near the end of the webcast.
- Survey at the end of the webcast.
- Slides and a recording of the webcast will be available at <u>www.waterrf.org</u>.

Download presentation

Slides and recording will be available to WRF subscribers WITHIN 24 hours after the webcast

Input your webinar questions here

Playing
Send.
Answered Questions
▼ Event Resources
Presentation Download

Q&A at end of webinar

Webcast Agenda

Торіс	Speaker	
Welcome, Introductions	Kristan VandenHeuvel, WRF	10 min
Pretreatment for Seawater Reverse Osmosis: Existing Plant Performance and Selection Guidance (Desal-14- 07/4763)	Joe Jacangelo, Stantec	25 min
Carlsbad Desalinated Seawater Integration Study (Desal- 15-06/4773)	Brent Alspach, Arcadis	25 min
Question and Answer	Kristan VandenHeuvel, WRF	30 min

Pretreatment for Seawater Reverse Osmosis: Existing Plant Performance and Selection Guidance

Joseph G. Jacangelo, PhD, REHS Nikolay Voutchkov, PhD, PE, BCEE Mohammad Badruzzaman, PhD, PE BCEE Lauren A Weinrich, PhD

Presentation

- Background
- Research Approach
- Full-Scale Plant Questionnaire and Interview/Site Visit Results
- Pretreatment Planning Tool

Drivers for this Study

- Pretreatment is key to successful operation of seawater desalination.
- Long-term reliability of the downstream RO membranes impacted by the pretreatment systems has not been systematically reviewed and documented for fullscale plants.
- Influence of non-water quality parameters or non-process factors on the selection of the pretreatment systems has not been reported.

Parameter	Recommended Maximum Value
Turbidity	0.5 NTU
Total organic carbon (TOC)	2 mg/L
Iron	0.1 mg/L
Manganese	0.05 mg/L
Free chlorine	0.1 mg/L
Oil and grease	0.1 mg/L
SDI15 minutes	3
voc	In mg/L range

Source: AMTA, 2012

Research Objectives

- Evaluate the impact of feed water quality on performance of pretreatment technologies and downstream RO processes.
- Collect full-scale data on the performance of various pretreatment technologies and operational data on RO process with pretreatment technology.
- More perspicuously identify and assess the criteria used for selecting pretreatment technologies at full-scale facilities.
- Based on information obtained, develop a tool that can provide guidance on pretreatment process selection and design.

Desalination 449 (2019) 78-91

Selection of pretreatment technologies for seawater reverse osmosis plants: A review

Mohammad Badruzzaman^{a,*}, Nikolay Voutchkov^b, Lauren Weinrich^c, Joseph G. Jacangelo^{d,e}

* Stantec Consulting Services, 300 N. Lake Ave, Suite 400, Pasadena, CA 91101, United States of America

^b Water Globe Consultants, ILC, 824 Contravest Lane, Winter Spring, FL 32708, United States of America

^c American Watar, 213 Carriage Lane Delran, NJ 08075, United States of America ^d Stantec Consulting Services, 1101 14th Street NW Suite 1200, Washington, DC 20005-5637, United States of America

* The Johns Hopkins University, Baltimore, MD 21205, United States of America

Task 1 Literature Review

ABSTRACT

Seawater desalination using reverse osmosis (RO) process has increased substantially in the recent past and is expected to grow at an increasingly rapid pace in the future. Successful operation of a seawater reverse osmosis (SWRO) plant depends on the ability of the pretreatment system to consistently produce adequately treated filtered water for the subsequent RO process. Both conventional (e.g., conventional/kamella sedimentation, dissolved air flocation, granular media gravity/pressure filtration) and membrane-based pretreatment processes (e.g., microfiltration, ultrafiltration) have found practical application worldwide. Although most of the currently operational pretreatment systems are conventional, low-pressure membrane based pretreatment systems are increasingly being considered for future plants. Thus, selection of conventional versus membrane based pretreatment is increasingly becoming difficult. Both water quality perspectives and non-water quality based rictical explexion of both conventional and membrane-based pretentent technologies by presenting water quality issues impacting their performances, critical design characteristics and their impacts on pretreatment selection, non-water quality based selection criteria, and a conceptual decision matrix for selection of pretreatment technologies for site specific conditions.

Task 3 Facility dits/Interview

1. Introduction

ARTICLEINFO

Keywords: Seawater desalination

Pretreatment

Microfiltration

Reverse osmosis Membrane fouling

Ultra filtration

Dissolved air flotation

Granular media filtration

Low pressure membrane

With water shortage crisis around the world and increasing demand, communities are turning to desalination as important strategy to supplement diminishing freshwater sources and to ensure reliable and drought-proof water supplies. The total global desalination capacity was about 40 million cubic meter per day (Mm⁹/day) in 2013, and has reached 88.6 Mm³/day in 2016 [1]. Seawater desalination is an indispensable source of fresh water supply in many areas of the world such as in the Middle East and in North African countries [2]. Desalination using reverse osmosis (RO) membranes has rapidly developed since the 1960's and has been the most frequently employed technology for desalination over the last 10 years [3]. RO systems account for > 65% of the current global production capacity (i.e., 58 Mm³/day) of desalination plants [1]. Seawater desalination by reverse osmosis (SWRO) is becoming increasingly popular compared to thermal and electrochemical processes due to its ease of operation, lower energy use and other operational and maintenance costs, and environmental friendliness [4–6]. Recent developments in membrane materials, modules and process design have contributed to the reduction of energy consumption for production of desalinated water by SWRO to 3 to 6kWh/m³, which is lower than the typical energy required by conventional thermal desalination processes (10 to 15 kWh/m³) [7,8]. According to Amy et al., development of emerging, potentially disruptive technologies through advances in material science, process engineering, and system integration will further reduce the energy consumption of a SWRO plant [9].

Check for updates

Despite significant advancements in membrane materials and design practices, membrane fouling, and biological fouling in particular, still remains as one of the major challenges associated with RO system operation and affects process efficiency in terms of quality and quantity of treated water [10]. Seawater has complex water quality

* Corresponding author.

E-mail addresses: Mohammad.Badruzzaman@stantec.com (M. Badruzzaman), nvoutchkov@water-g.com (N. Voutchkov), Lauren.Weinrich@amwater.com (L. Weinrich), Josephjacangelo@stantec.com (J.G. Jacangelo).

https://doi.org/10.1016/j.desal.2018.10.006

Received 24 May 2018; Received in revised form 25 August 2018; Accepted 2 October 2018 Available online 24 October 2018 0011-9164/ © 2018 Published by Elsevier B.V.

Apprc	A. BACKGROUND INFORMATION	
	1. Utility/Company Name:	
	2. Plant Address:	
	3. Contact Information:	
	Name of Respondent:	
Task 1	Phone Number: E-mail address: 4. Plant Start-up Date (mm/yyyy):	Task 3
Literature Review	5. Operated by: Public Agency (municipality, utility, etc.) Private Contractor	Facility its/Interview
	6. Plant Capacity: Design Capacity (m3/d or MGD) Current Capacity (m3/d or MGD)	
	 7. Please Indicate the Type of Intake of Your Plant: Subsurface Intake (Beach wells) Open Intake (Above ocean floor) If a subsurface intake is used, please select which of the following type of intake is being used: Vertical Beach Wells Horizontal Ranney-type Wells 	
	 Horizontal Directly Drilled Wells Seabed Infiltration Gallery 8. Please provide schematic of your desalination plant depicting key facility components including intake, pretreatment, reverse osmosis, and post treatment. Please attach a separate file with the schematic. 	
_		

n. ALL RIGHTS RESERVED. 11

Approach to Study

Approach to Study

Forty-Two SWRO Plants Were Considered

Eight Plants Selected To Participate in Study

Description of Plants Participating in Study

Pretreatment Processes of Seawater Desalination Plants Participating in Study

Plant ID	Pretreatment Category	Pretreatment Processes
Plant A	Conventional	Dissolved Air Flotation - Single Stage Dual Media Pressure Filter - 5
(DAF+DMF+CF)		micron Cartridge Filter
Plant B	Conventional	Single Stage Dual Media Gravity Filter - 5 micron Cartridge Filter
(DMF+CF)		
Plant C	Membrane	Microscreen - Microfiltration
(MS+MF)		
Plant D	Conventional	Dynasan [®] Filtration - Diatomaceous Earth Filtration - 5 micron
(DynaSand [®]		Cartridge Filter
+DE+CF)		
Plant E	Conventional	Dissolved Air Flotation - Single Stage Dual Media Gravity Filter- 5
(DAF+DMF+CF)		micron Cartridge
Plant F	Conventional	5 micron Cartridge Filter
(CF)		
Plant G	Conventional	5 micron Cartridge Filter
(CF)		
Plant H	Membrane	Microscreen - Ultrafiltration
(MS+UF)		

Water Quality

Feed Water Quality Parameters (SDI and Turbidity)

SDI

Turbidity

Feed Water Quality Parameters (TDS and TOC)

(only three plants monitored)

Water Conditioning Practiced at Plants

Source Water Conditioning is Often a Critical Pretreatment for Controlling Fouling Potential

- Coagulation and flocculation to control the fouling potential of the source seawater.
- Pre-chlorination to control the growth of sea organisms/microorganisms.
- Antiscalant for scaling prevention.
- Addition of reducing agent to quench excess chlorine.

Pre-Chlorination (Shock, Intermittent, Continuous) Practice

Addition of Sodium Bisulfite for SWRO Protection by Plants

10

 Overdosing sodium bisulfite as a control practice for the oxidation-reduction potential (ORP) increased AOC levels

Antiscalant Addition Practice by Plants Participating in Study

Conventional and Membrane Pretreatment Systems

Conventional Pretreatment

Design Characteristics of Granular Media Filtration

Design Parameter	Plant (DAF-DM	A F-CF)	Plant B (DMF-CF)		Plant D (DS-DE-CF)	Plant E (DAF-DMF-CF)	
Design Futuriteter	Stage	1	Stage 1		DynaSand	Stage 1	
Media type	Anthracite	Sand	Gravel/Sand	Anthracite	Fine sand	Sand	Pumice
Media depth (m)	0.55	0.45	0.2/0.5	0.5	2.74	0.4	0.7
Surface loading rate (m3/m2/hr)	14		6.3		8	9.:	13
Backwash frequency (hrs)	36 to 48		70		Continuous	2	4
Waste stream volume (% of feed flow)	4%		2.2	2%	5-10%	3.2	2%

SDI Values for Conventional Plants

Turbidity Removal by Conventional Plants

Impact of the DMF System on the SWRO Membrane (Plant A: DAF- DMF- CF)

Parameter	GA 150361 Membrane surface Results (ufc / cm²)	GA 150362 Membrane surface Results (ufc / cm²)
Aerobic Bacteria (22ºC)	5,1x10 ³	1x10 ⁴
Sulphite-Reducing Bacteria	< 1	< 1
Pseudomonae Sp.	27	4,6x10 ²
Moulds and Yeasts	8	3

n. ALL RIGHTS RESERVED. 32

Impact of the DMF System on the SWRO Membrane (Plant E: DAF- DMF- CF)

Pretreatment Systems for Subsurface Intake Plants

- Plant F and Plant G utilize beach wells as intake.
- Plants only use cartridge filters as pretreatment.
- SDI values in the feed water are typically less on 3.0.
- Hydro-geologic conditions play an important role as the presence of Fe and Mn might impact the RO performance.

SDI Values and Turbidity for Plants F & G (Only CF)

 Plant G monitors the SDI values and the color of the SDI filtration pads to determine which well should be selected to minimize iron loading on the RO system.

LL RIGHTS RESERVED. 35

Low-Pressure Membranes Employed as a Pretreatment

Transmembrane Flux Profile at Plant C (Membrane-based Pretreatment)

n. ALL RIGHTS RESERVED. 37

HABs and Silt Content Impact the Performance: Plant C

Phytoplanktonic Species	Feed seawater	MF Backwash	MF Filtrate	Length	Width
Unit	Cell/liter	Cell/liter	Cell/liter	μm	μm
Cylindrotheca closterium	< 25,000	250,000	Absent	90	8
Pleurosigma normanii	< 25,000	250,000	Absent	90	15
Pleurosigma sp	< 25,000	250,000	Absent	300	50
Ceratium furca	< 25,000	250,000	Absent	105	25
Dinophysis Caudate	< 25,000	250,000	Absent	85	47
Gonyaulax Polygramma	5,637,500	53,125,000	Absent	50	38
Prorocentrum Sigmoides	37,500	375,000	Absent	65	27
Protoperidinium Steinii	< 25,000	250,000	Absent	35	55
Total	< 5,825,000	55,000,000	Absent		

Gonyaulax Polygramma

Prorocentrum Sigmoides

MF Backwash during Algal Bloom

RO Performance at Plants

Impacts of Pretreatment on SWRO Operations

Plant Name	Membrane Cleaning Frequency (months)	Cartridge Filter Replacement Frequency (months)	Membrane Replacement Frequency (% per year)
Plant A (DAF-DMF-CF): Toray	6	2 to 3	10 to 12
Plant B (DMF-CF): Hydranautics/Dow	3	3	< 10
Plant C (MS-MF): Hydranautics	0.5	No CF	< 10
Plant D (DS-DE-CF): Hydranautics/Dow	2 to 3	12	14.3
Plant E (DAF-DMF-CF): Hydranautics/Dow	2 to 3	2	10 to 12
Plant F (CF): Toray	6	1.25	5
Plant G (CF): Toray	4 to 5	2 to 3	25
Plant H (MS-UF): Dow/NanoH2O	N/A	N/A	N/A

n. ALL RIGHTS RESERVED. 41

Objective: To assist water utilities in the selection of various seawater pretreatment systems.

- General plant information (Input File)
- Influent water quality Information (Input File)
- Recommended conventional or membrane-based pretreatment alternatives (Output File)
- Effluent water quality information specific for intake type and selected pretreatment alternative (Output File)
- System design information (Output File)
- Comparison of alternatives based on non-water quality related information (Output File)
- Guidance worksheets on various water quality aspects, system design and operation (Output File)

General Description Worksheet

Project Information	
Project Name Project Description Utility Contact Person	

Desalination Plant Information

Plant Name Location Desalination Plant type Plant Implementation Status Plant Start-up			
Please select the units of preference for	input and output da	ata US units (e.g., ft, gal)	
Desalination Plant Peak Capacity Desalination Plant Average Capacity	Units MGD MGD	Value	
Intake Type	Туре	N/A	
Please resond to the following question if "Subsurface Intake" is selected			
Subsurface Intake Type	Туре	N/A	

Water Quality Input Worksheet

Parameters	Units	Valu
emperature	Degree C	
DH	-	
Turbidity	NTU	
SDI	-	
тос	mg/L	
TDS	mg/L	
Iron	mg/L	
Manganese	mg/L	
Oil and Grease	mg/L	
Please provide the following infor	mation representing Units	g the redtide even
Expected Algal Cell Count	cells/L	-
Expected Chlorophyll a	μg/L	-

Recommended Pretreatment Alternatives Worksheet

Pretreatment Process Selection			
Intake Type	Open Intake		
Recommended Alternative	Conventional Treatment DAF → TS DMF → CF	Membrane-Based Treatment DAF \rightarrow SS DMF \rightarrow MF/UF \rightarrow CF	
	Acronyms DAF: Dissolved Air Flotation TS DMF: Two-Stage Dual Media Filter CF: Cartridge Filter	DAF: Dissolved Air Flotation SS DMF: Single Stage Dual Media Filter MF/UF: Membrane Filtration CF: Cartridge Filter	

Recommended Pretreatment Alternatives Worksheet

Design Specification Worksheet

Summary

- Selection of pretreatment was a function of feed water quality, intake system, and membrane fouling propensity.
- Iron and manganese, DOC/AOC were key parameters involved in fouling of RO membranes.
- Plant delivery and operations contracts played a key role on design and operational performance of membranes.
- An excel-based pretreatment process selection tool can be useful as a first step when considering The Water Research Foundation. ALL RIGHTS RESERVED. 47

- Funding: Water Research Foundation (Project #WRRF-14-07)
- Research Manager: Kristan VandenHeuvel WRF
- Project Advisory Committee (PAC) Members: Con Pelekani, SA Water; Jonathan Dietrich, Dietrich Consulting; John Tonner, Consolidated Water; Neil Callahan, Louis Berger; Robert Cheng, CVWD; Sohail Murad, U of Illinois, Chicago
- Participating SWRO Plants and the utility personnel responding to the questionnaire

Thanks!

joseph.jacangelo@stantec.com

© 2019 The Water Research Foundation. ALL RIGHTS RESERVED. No part of this presentation may be copied, reproduced, or otherwise utilized without permission.

Carlsbad Desalinated Seawater Integration Study

Desal-15-06 / 4773

Brent Alspach, PE, BCEE

Director of Applied Research Arcadis

© 2019 The Water Research Foundation. ALL RIGHTS RESERVED. No part of this presentation may be copied, reproduced, or otherwise utilized without permission.

Research Team

- Brent Alspach, Pl
 Arcadis
- Greg Imamura
- Dr. Jerry Speitel

U. of Texas

Arcadis

Water Research Foundation

• Kristan VandenHeuvel, PM

Project Advisory Committee

- Wendy Chambers Irvine Ranch Water District
- Dr. Robert Cheng
 Coachella Valley Water District
- Dr. Christine Owen Hazen and Sawyer
- Nikolay Voutchkov
- Justin Pickard

- Water Globe Consulting
 - Water Systems Consulting

Partner Agencies

Carlsbad Municipal Water District City of San Diego Helix Water District **Olivenhain Municipal Water District Otay Water District** Poseidon Water **Rincon del Diablo Municipal Water District** San Diego County Water Authority Sweetwater Authority Vallecitos Water District

Partner Agencies

THANKS!

 \bigcirc

- Carlsbad Municipal Water District City of San Diego Helix Water District Olivenhain Municipal Water District Otay Water District Poseidon Water
- Rincon del Diablo Municipal Water District San Diego County Water Authority Sweetwater Authority Vallecitos Water District

Partner Agencies

Carlsbad Municipal Water District City of San Diego Helix Water District Olivenhain Municipal Water District Otay Water District Poseidon Water

Owner of the Carlsbad Desalination Plant (CDP)

Rincon del Diablo Municipal Water District San Diego County Water Authority Sweetwater Authority Vallecitos Water District

Partner Agencies

Carlsbad Municipal Water District City of San Diego Helix Water District Olivenhain Municipal Water District Otay Water District Poseidon Water

Rincon del Diablo Municipal Water District

San Diego County Water Authority

Sweetwater Authority Vallecitos Water District

Regional wholesaler and sole purchaser of CDP water

Partner Agencies

Carlsbad Municipal Water District City of San Diego Helix Water District Olivenhain Municipal Water District Otay Water District Poseidon Water Rincon del Diablo Municipal Water District

SDCWA Member Agencies

San Diego County Water Authority

Sweetwater Authority

Vallecitos Water District

Background

- Collect data over a 3-year window
 - Two pre-CDP baseline years: 2014-15
 - First year of CDP operation: 2016
- Focus on water quality data collected during routine system operation
- Utilize existing monitoring locations

SDCWA Treated Water Supplies

- Imported treated water, from MWD's Skinner WTP
- Imported raw water, treated locally at the Twin Oaks Valley WTP
- CDP desalinated seawater

- Collect data over a 3-year window
 - Two pre-CDP baseline years: 2014-15
 - First year of CDP operation: 2016
- Focus on water quality data collected during routine system operation
- Utilize existing monitoring locations

SDCWA Treated Water Supplies

- Imported treated water, from MWD's Skinner WTP
- Imported raw water, treated locally at the Twin Oaks Valley WTP
- CDP desalinated seawater

Combined sources of Colorado River Water (CRW) & State Project Water (SPW)

- Collect data over a 3-year window
 - Two pre-CDP baseline years: 2014-15
 - First year of CDP operation: 2016
- Focus on water quality data collected during routine system operation
- Utilize existing monitoring locations

SDCWA Treated Water Supplies

- Imported treated water, from MWD's Skinner WTP
- Imported raw water, treated locally at the Twin Oaks Valley WTP
- CDP desalinated seawater

- Collect data over a 3-year window
 - Two pre-CDP baseline years: 2014-15
 - First year of CDP operation: 2016
- Focus on water quality data collected during routine system operation
- Utilize existing monitoring locations

Categories

- General Physical / Chemical Parameters
- Salinity and Chloride
- Disinfectant Residual
- Nitrification
- Disinfection By-Products
- Corrosion
- Boron and Sodium Adsorption Ratio (SAR)

Categories

- General Physical / Chemical Parameters
- Salinity and Chloride
- Disinfectant Residual
- Nitrification
- Disinfection By-Products
- Corrosion
- Boron and Sodium Adsorption Ratio (SAR)

WateReuse California Annual Conference March 25-27, 2018

Categories

- General Physical / Chemical Parameters
- Salinity and Chloride
- Disinfectant Residual
- Nitrification
- Disinfection By-Products
- Corrosion
- Boron and Sodium Adsorption Ratio (SAR)

Categories

- General Physical / Chemical Parameters
- Salinity and Chloride
- Disinfectant Residual
- Nitrification
- Disinfection By-Products
- Corrosion
- Boron and Sodium Adsorption Ratio (SAR)

WateReuse Association Annual Symposium September 9-12, 2018

Categories

- General Physical / Chemical Parameters
- Salinity and Chloride
- Disinfectant Residual
- Nitrification
- Disinfection By-Products
- Corrosion
- Boron and Sodium Adsorption Ratio (SAR)

AWWA Water Quality Technology Conference November 11-15, 2018

Categories

- General Physical / Chemical Parameters
- Salinity and Chloride
- Disinfectant Residual
- Nitrification
- Disinfection By-Products
- Corrosion

The WRF-15-06 report provides an extensive discussion of the water quality influences pertaining to each of these categories.

Boron and Sodium Adsorption Ratio (SAR)

Categories

- General Physical / Chemical Parameters
- Salinity and Chloride
- Disinfectant Residual
- Nitrification
- Disinfection By-Products
- Corrosion
- Boron and Sodium Adsorption Ratio (SAR)

Key Water Quality Findings

- Ocean water temperature exerts a significant influence on SWRO finished water quality, and by extension, the treated water blends delivered to SDCWA member agencies.
 - 2. The potential for bromide-induced chloramine residual decay was successfully mitigated.
 - 3. The introduction of SWRO supplies seemed to decrease fluctuation in several interrelated water quality parameters pertaining to chloramine residual and nitrification.

Key Water Quality Findings

- Ocean water temperature exerts a significant influence on SWRO finished water quality, and by extension, the treated water blends delivered to SDCWA member agencies.
 - 2. The potential for bromide-induced chloramine residual decay was successfully mitigated.
 - 3. The introduction of SWRO supplies seemed to decrease fluctuation in several interrelated water quality parameters pertaining to chloramine residual and nitrification.
1. Ocean water temperature exerts a significant influence on SWRO finished water quality, and by extension, the treated water blends delivered to SDCWA member agencies.

Detailed analysis shown today is not directly addressed in the Desal-15-06 report.

1. Ocean water temperature exerts a significant influence on SWRO finished water quality, and by extension, the treated water blends delivered to SDCWA member agencies.

ChlorideSARTDSCSMRBoronCCPPSodiumLSI

1. Ocean water temperature exerts a significant influence on SWRO finished water quality, and by extension, the treated water blends delivered to SDCWA member agencies.

SAR

CSMR

CCPP

LSI

Chloride

TDS

Boron

Sodium

Temperature factors into the formulae for calculation.

1. Ocean water temperature exerts a significant influence on SWRO finished water quality, and by extension, the treated water blends delivered to SDCWA member agencies.

Demonstrated effect on

numerous parameters

- Seasonal changes in ocean water and imported water temperature track closely...
- ...purely by coincidence.
- Temperature increases slightly within the SDCWA regional conveyance (as expected).
- Range of temperature fluctuation: ~10 °C

Key Points:

- Seasonal changes in ocean water and imported water temperature track closely...
- ...purely by coincidence.
- Temperature increases slightly within the SDCWA regional conveyance (as expected).
- Range of temperature fluctuation: ~10 °C

Important implications!

Temperature Influence: Chloride

- SWRO water chloride levels exhibit seasonal variation with temperature due to fluctuations in RO rejection.
- The magnitude of seasonal variation in SWRO water chloride levels is significant:
 ~ 40-100 mg/L (2.5x)
- → SWRO supplies reduced chloride in treated water blends in 2016.

Temperature Influence: Sodium

- SWRO water sodium levels exhibit seasonal variation with temperature due to fluctuations in RO rejection.
- The magnitude of seasonal variation in SWRO water sodium levels is significant:
 ~ 25-75 mg/L (3x)
- → SWRO supplies reduced sodium in treated water blends in 2016.

Temperature Influence: TDS

- The peak SWRO water TDS (~300 mg/L) is about ½ imported water TDS in 2016.
- The magnitude of seasonal variation in SWRO water TDS levels is significant:
 ~ 100-300 mg/L (3x)
- At points of greatest differential in 2016, SWRO water is ~20% that of imported water.
- → SWRO supplies reduced both potable water salinity and regional salinity loading.

Temperature Influence: SAR

Temperature Influence: Calcium

Temperature Influence: Calcium

- The divalent calcium ion is more efficiently rejected by SWRO membranes; thus, fluctuation of permeate levels with seasonal temperature is not observed.
- Calcium levels are about 3.5x higher in imported supplies vs. SWRO water.
- → SWRO supplies reduced calcium in treated water blends in 2016.

Temperature Influence: Magnesium

- The divalent magnesium ion is more efficiently rejected by SWRO membranes; thus, fluctuation of permeate levels with seasonal temperature is not observed.
- Magnesium levels are >10x higher in imported supplies vs. SWRO water.
- → SWRO supplies reduced magnesium in treated water blends in 2016.

Temperature Influence: SAR

- SWRO water SAR levels vary seasonally due to sodium fluctuations.
- The magnitude of seasonal variation in SWRO water SAR levels is significant:
 ~ 1.4 4.3 mg/L (3x)
- SWRO and imported water SAR levels are very similar, on average: 2.52 vs. 2.63 (resp.)

Temperature Influence: CSMR

Temperature Influence: Sulfate

Temperature Influence: Sulfate

- The divalent sulfate ion is more efficiently rejected by SWRO membranes; thus, fluctuation of permeate levels with seasonal temperature is not observed.
- Sulfate levels are about 10x higher in imported supplies vs. SWRO water.
- → SWRO supplies reduced sulfate in treated water blends in 2016.

Temperature Influence: CSMR

- The CSMR in SWRO water varies with temperature due to the similar phenomenon observed for chloride.
- SWRO water CSMR values are significantly higher than benchmark values reported in the literature.
- The magnitude of seasonal variation in SWRO water CSMR levels is significant:
 ~ 2 7 (3.5x)
- → SWRO supplies significantly increased CSMR in treated water blends in 2016.

Temperature Influence: CSMR

- The CSMR in SWRO water varies with temperature due to the similar phenomenon observed for chloride.
- SWRO water CSMR values are significantly higher than benchmark values reported in the literature.
- The magnitude of seasonal variation in SWRO water CSMR levels is significant:
 ~ 2 7 (3.5x)
- → SWRO supplies significantly increased CSMR in treated water blends in 2016.

Temperature Influence: Boron

- SWRO water boron levels exhibit seasonal variation with temperature due to fluctuations in RO rejection
- The magnitude of seasonal variation in SWRO water boron levels is significant:
 ~ 0.4 0.8 mg/L (2x)
- Recent historic imported water boron levels:
 ≈ 0.11 - 0.16 mg/L.

Temperature Influence: CCPP

- SWRO water has lower CCPP than imported water supplies over 2016.
- CCPP exhibits seasonal variation with temperature, which is a variable in the calculation (and not due to the influence of fluctuations in RO rejection).
- → SWRO supplies reduced CCPP in treated water blends in 2016.

Temperature Influence: LSI

Key Points:

- SWRO water has lower LSI than imported water supplies over 2016.
- LSI exhibits seasonal variation with temperature, which is a variable in the calculation (and not due to the influence of fluctuations in RO rejection).
- → SWRO supplies reduced LSI in treated water blends in 2016.

Same key points as for CCPP

Assessing the Impact of Temperature

System Component	Phenomenon	Result(s)	Net Impact on Permeate Concentrations
Dissolved Solids	Higher diffusion coefficient	 Increased salt passage 	Higher
Membrane Product	Increased membrane permeability	Increased salt passageIncreased water throughput	Mixed
Water	Decreased viscosity	 Increased water throughput 	Lower

System Component	Phenomenon	Result(s)	Net Impact on Permeate Concentrations
Dissolved Solids	Higher diffusion coefficient	 Increased salt passage 	Higher
Membrane Product	Increased membrane permeability	 Increased salt passage Increased water throughput 	Mixed
Water	Decreased viscosity	 Increased water throughput 	Lower
Aut	tomatic reduced-pressure ompensation for constant flow systems		·

System Component	Phenomenon	Result(s)	Net Impact on Permeate Concentrations
Dissolved Solids	Higher diffusion coefficient	 Increased salt passage 	Higher
Membrane Product	Increased membrane permeability	 Increased salt passage Increased water throughput 	Higher
Water	Decreased viscosity	 Increased water throughput 	Lower
Aut	tomatic reduced-pressure ompensation for constant flow systems		Prevailing influence

System Component	Phenomenon	Result(s)	Net Impact on Permeate Concentrations
Dissolved Solids	Higher diffusion coefficient	 Increased salt passage 	Higher
Membrane Product	Increas <mark>Simplistic Permeability Permeability</mark>	assessment of _{ge} phenomena…	Higher
Water	Decreased viscosity	 Increased water throughput 	Lower
Aut	tomatic reduced-pressure ompensation for constant flow systems		Prevailing influence

System Component	Phenomenon	Result(s)	Net Impact on Permeate Concentrations
Dissolved Solids	Higher diffusion coefficient	 Increased salt passage 	Higher
Membrane Product	but useful for i	Ilustration purposes	Higher
Water	Decreased viscosity	 Increased water throughput 	Lower
Aut	tomatic reduced-pressure ompensation for constant flow systems		Prevailing influence

Feed TDS (mg/L)	Permeate Concentration (mg/L) with Rejection at…		
	99.8%	99.5%	99.2%

Feed TDS (mg/L)	Permeate Concentration (mg/L) with Rejection at…		
	99.8%	99.5%	99.2%
2,000	4	10	16

Feed TDS (mg/L)	Permeate Concentration (mg/L) with Rejection at…		
	99.8%	99.5%	99.2%
2,000	4	10	16
5,000	10	25	40

Feed TDS (mg/L)	Permeate Concentration (mg/L) with Rejection at…		
	99.8%	99.5%	99.2%
2,000	4	10	16
5,000	10	25	40
10,000	20	50	80

Feed TDS	Permeate Concentration (mg/L) with Rejection at…		
(mg/L)	99.8%	99.5%	99.2%
2,000	4	10	16
5,000	10	25	40
10,000	20	50	80
20,000	40	100	160

Feed TDS	Permeate Concentration (mg/L) with Rejection at…		
(mg/L)	99.8%	99.5%	99.2%
2,000	4	10	16
5,000	10	25	40
10,000	20	50	80
20,000	40	100	160
35,000	70	175	280
Permeate Concentration vs. % Rejection

Feed TDS (mg/L)	Permeate Concentration (mg/L) with Rejection at…		
	99.8%	99.5%	99.2%
2,000	4	10	16
5,000	10	25	40
10,000	20	50	80
20,000	40	100	160
35,000	70	175	280
Amplification Factor	_	2.5x	4 x

Permeate Concentration vs. % Rejection

Feed TDS (mg/L)	Permeate Concentration (mg/L) with Rejection at…		
	99.8%	99.5%	99.2%
2,000	4	10	16
5,000	10	25	40
10,000	20	50	80
20,000	40	100	160
35,000	70	175	280
Amplification Factor	_	2.5x	4 x

Large % change (amplification factor), but small magnitude

Permeate Concentration vs. % Rejection

Feed TDS (mg/L)	Permeate Concentration (mg/L) with Rejection at…		
	99.8%	99.5%	99.2%
2,000	4	10	16
5,000	10	25	40
10,000	20	50	80
20,000	40	100	160
35,000	70	175	280
Amplification Factor		2.5x	4 x

Same % change, but large magnitude

Permeate Concentration vs. % Rejection

Feed TDS (mg/L)	Permeate Concentration (mg/L) with Rejection at…		
	99.8%	99.5%	99.2%
2,000	4	10	16
5,000	10	25	40
10,000	20	50	80
20,000	40	100	160
35,000	70	175	280
Amplification Factor	_	2.5x	4 x

Desal-15-06 Observations

Parameter	Amplification		
Boron	2x		
Chloride	2.5x		
CSMR	3.5x		
Sodium	3x		
SAR	3x		
TDS	3x		
for a temperature range of about 10 °C.			

Implications

Be attentive to temperature!

• Evaluate cold water temperature to size the system for sufficient throughput under limiting conditions.

• Evaluate cold water temperature to size the system for sufficient throughput under limiting conditions.

- Evaluate warm water temperature to ensure target permeate quality, particularly for conditions of:
 - ⇒ High feed water TDS (e.g., seawater)
 - ⇒ Stringent permeate concentration targets

• Evaluate cold water temperature to size the system for sufficient throughput under limiting conditions.

- Evaluate warm water ter very studious about this step... permeate quality, particularly for conditions of:
 - ⇒ High feed water TDS (e.g., seawater)
 - ⇒ Stringent permeate concentration targets

• Evaluate cold water temperature to size the system for sufficient throughput unabut not always as careful to account for this consideration.

- Evaluate warm water temperature to ensure target permeate quality, particularly for conditions of:
 - ⇒ High feed water TDS (e.g., seawater)
 - ⇒ Stringent permeate concentration targets

Final Message...

Be diligent about details in non-standard RO applications.

ARCADIS

Thank you for your attention!

ARCADIS

Questions?

Questions?

Thank You

Comments or questions, please contact:

kvandenheuvel@waterrf.org

For more information, visit

www.waterrf.org

© 2019 The Water Research Foundation. ALL RIGHTS RESERVED. No part of this presentation may be copied, reproduced, or otherwise utilized without permission.