

Starting Shortly

Applied Fundamentals for Nitrogen and Phosphorus Removal Optimization

Presenters: JB Neethling, David Stensel, James Barnard and Bryce Figdore

> March 17, 2021 12:00 – 2:00 PM EST

Search: WRF 4973 webinar

Applied Fundamentals for Nitrogen and Phosphorus Removal Optimization

Strategies to Optimize WRRFs for Nutrient Removal

17 March 2021

INTRODUCTION - OVERVIEW

What is your job/position?

What are your TWO MAIN optimization goals/interest?

What Return on Investment period is acceptable for reduced operating cost?

Excess water	Reduced Capacity	CSO plant
Wide variations in loading	Large storm events	Winter
Both high and low flow events.	Under loaded plant	Recycle impacts causing inhibition

Low pH.	industrial inputs	plant load changes
Construction activities negating impact of optimization work	side stream slug loads	plant upset
Climate. Temperature.	Large storms and snowmelts	not sure of what is being asked

Filament problem combined with rain event

No side stream treatment

wide diurnal patterns

slug industrial loads, slug septage receiving station loads, snowmelt

Mainly temperature

Excessive peak flowIntermittent industrial discharges of high strength

mixed liquor high temperatures 35 deg C +

RAS/WAS control or lack there of

It seems that old aeration/mixing systems can create less than ideal reactors and/or systems can be constrained by aerator turndown limits.

filimentous	plant flow far below design flow	reduced capacity/changes due to active construction projects
A raining incidence	Poor mixing, non-reactive P, interplay within our biological processes (we are an HPO plant)	plant overload and maintenance
Unreliable blowers	diluted influent periods, due to rain events.	Wet weather eventsAeration issues

unequalized centrate return		increase MLSS		None
-----------------------------	--	---------------	--	------

Nitrogen Removal

David Stensel

Glycol	Adjust SRT	Bioaugmentation
Add alkalinity!	Not an issue in Hawaii	increase SRT
Step feed to increase SRT	None	Increased MLSS

MBBR technology	Add alkalnity	Increased SRT
Increase mcrt	Longer srt and slow hrt down	SRT control
Increase alkalinity	Increase alkalinity	IFAS

Reduce wasting (increase SRT)	Increase MLSS	Adjust srt
increase SRT	Increase MLSS	Increase alkalinity
Alkalinity addition	alkalinity	Increase SRT and add alkalinity

Increase sludge mass

Longer SRTs

We are not that cold, but increase MLSS and SRTs

improve O2 and SRT

Increase SRT

Not an issue in Atlanta

Ehancing alkalinity

granular sludge Increase SRT Increase recycle

Increase SRT SRT/alkalinity/MLSS

Changes to feed location in step feed operation

Unknown

More alkalinity.

Srt adjustnent

Media

Increased Srt

Increase dlkalinity first, then increase services servi

Raise MLSS, add alkalinity increase alkalinity Increase operating pH, operate with higher MLSS, Higher SRT

Increase IR add alkalinity Add alkalinity

Design at the outset.

Add Alkalinity IFAS

Increase SRT and monitor PH.

Mag OH

Change MLVSS/adjust SRTAdd chemical

Adjust SRT

load balance

+ SRT

Increase SRT

MABR

Look at your solids inventory

Increase MLSS

Add alkainity

Alkalinity addition to increase pH, increase SRT

Increase Mlss

Increase Mlss

Increase SRT

Catchment management

Add alkalinity

Add alkalinity

Inc SRT	increase SRT, reduce wasting for a short period	??
Step feed	Reduce anoxic volume	Methanol
None	Haven't nitrified in winter. Will have	None
	requirements in the future.	

Increased MCRT MLSS
Concentration

Which supplemental substrate do you use at your facility to enhance denitrification. Select ALL that applies.

Swing zones	Reduce return DO	N/A
reduce aerated volume	DO control	increase DO
DO control	Add carbon to post anoxic	Reduce DO in summer

Recycle	Controlling DO carry-over	N/A
ABAC	Swing zones	Increase DO
NA	Not applicable	DO control

Swing zones	DO control	Low DOs
NA	DO co trol	Do controlswing zones
Add carbon to second anoxic	Increase recycle	Low DO in last Aer pass

DO control	Increase doIncrease mlss recycle	DO control
Swing zones	automate methanol dosing	low DO
Increase DO	Control DO through zones	Tapered DO using diffused air

Plug excess diffusers	Recycle rates	Boost DO
Not aware of any.	inetnsification by MABR	carbon supplement
DO control	Degassing	NA

Carbon addition in second anoxic

DO control

adjust recycle rate

Opening between the aerobic and second anoxic zone

Step feed

low DO

NARCY pump rates

Add methanolIncrease DOIncrease recycle

Step feed and internal recircling ratio control

N/A

Swing stages or carbon addition

Improve RAS and Carbon mixing, increase Anoxic HRT

control sludge age and aeration

Carbon feed from craft beer waste

Carbon addition

RAS Fermentation

Na			
NG			

Phosphorus Removal - Chemical

JB Neethling

Which of these chemicals have you used for P removal?

Please note all chemical dose locations you've used/seen for P removal

NA	Primary clarification	Not used.
Tertiary	Primary and Secondary	Ferric chloride
N/A	Secondary clarifier	Primary

Please note all chemical dose locations you've used/seen for P removal

Primary, Secondary, and Tertiary	Prior to clarifiers	Pre-Dewatering
Secondary Clarifier Splitter Box	Primary	Primary Clarification
anaerobic digester	Secondary clarification	Tertiary

Primary, secondary and tertiary	Primary	secondary
secondary	primary	Tertiary
Primary	primary effluent	PST, ASP, Pre-FST, Pre-TSR

Before primary or secondary clarifiers	tertiary - pre-filter	Primary
Secondary, tertiary	Primary	primary eff
Secondary clarification	Primary, end of aeration	Final Clarification

NA	before primary clarifier	Tertiary
Primary, secondary	NA	Primary, secondary and tertiary
Upstream of Primary Clarification	Primary	Primary clarifier and second clarifier

Primary Secondary Tertiary Pre-Digestion Pre-Dewatering

End of oxic zone

Primary clarifiers

Primary clarifiers

Primary clarifiers

Primary primary clarifiers

Primary clarifiers

Primary

Primary

Secondary

Primary

Secondary

N/A

Mainly primary A little in the aeration tank

Primaries, after aeration, prior to tertiary filter or ballasted floc

Primary and Final Clarifiers

Secondary

Primary and secondary clarifiers

Primary

Primary, dual purpose as part of odor control H2S control

Pretreat, end of aeration tanks	Primary	Primary influentSecondary effluent
tail end of aeration tanks	digesters, secondary clarifiers, upstream of filtration	Centrate
Between the biological process and clarifiers	primary	Primary, MLSS channel, dewatering

clarifier or before filtration.

after aeration basin before secondary clarifier

after aeration

PrimarySide streamAeration effluent

Secondary Clarifier Splitter Box

primary; before filters

Head works, aeration tank, RAS return, before filters

Dewatering centrate return

None at WW plant. Spent Ferric at Water treatment plant binds P into solids

Filtration	Near end of aeration	Before Primary Settling TanksBefore tertiary filters
Primary and secondary	Primary/secondary clarifiers	Secondary Clarifier.
after aearation	In tertiary application in clarifiers. We also dose it to the teriary sludge lie that is recycled back to the head of the plant.	Ahead of tertiary filters.

secondary clarifier

primary clarifiers

before primary and after aeration tank (dual point)

Primary Dewatering and MLSS channel

After primary: mixed liquor upstream of sec clarifiers; upstream of tertiary filters

before rotating biological contactors

to aeration, post secondary clarifer prior to disc filtration.

INfluent (ahead of Primaries, In first stage of Aeration, last stage of Aeration,

N/A

none			

Biological Phosphorus Removal

James Barnard

NA	N/A	Pulled out the internal recycle pumps
Turn off air in part of pass one	More filtration	turn off mixers or aeration
partition anoxic reactor	Better process control with online instruments	RAS fermentation

clarification

Switch of mixers

Septic sludge storage tank returning liquors

None

RAS fermentation

Reduce aerated zone

Basin/zone conversion

Incorporate activated primary

NA

Using existing tank and convert it to a Fermenter

NA

using excess tankage for primary sludge fermentation but it didn't really work

Reduce ASP DO, reduce RAS rates, Turn off mixers

Re-use existing tankage for fermentation

NA

Swing zones

activated primaries

adding a pre-anoxic before anaerobic.

Step feed, recycle

Are-allocate mass

NA

Feed sludge from PST to An zone

multiple zones

try to ferment in primaries - high blanket

Ferment sludge in existing tanks, such as thickener.

Occurred in corners of tanks with surface mixers

Maximum detention in primary clarifiers before Anaerobic process.

Tank re-purpose

Add methanol

On-off aeration

n/a

look into processes

Changed the Anoxic stage to fermentation basin and used SND in ditches

Longer Sludge age MCRT 12 to 20 days.Less Anaerobic Mixing

N/a

Which of the following strategies could IMPROVE RELIABLE performance in a conventional EBPR plant?

What chemical additions can improve EBPR?

Granulation/Densification

Bryce Figdore

Has your WRRF observed potential granulation or densification of activated sludge?

0	0	0	
Yes,	Yes, but only	No, never	
consistently	occasionally		

What design/operating features may be helping granulation / densification? Please include facility name and location if you're willing.

