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INTELLIGENT WATER SYSTEMS CHALLENGE 2019 

DEVELOP ADVANCED MODELS TO PREDICT AND OPTIMIZE 

CHEMICAL DOSAGE FOR ODOR AND CORROSION CONTROL 
AT JAMES C. KIRIE WATER RECLAMATION PLANT 

 

1 TEAM  
A collaboration between the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) 

and Illinois State University (ISU). 

i. Fenghua Yang, PE, BCEE, Senior Environmental Research Scientist, MWRDGC (Team leader and 

Utility Research), specializes in energy efficient wastewater treatment process, online process 

control, biological nutrient removal, and resource recovery. She currently serves in the WERF Low 

Carbon, Low Energy Nutrient removal project, and IWA Meta-Data Collection and Organization in 

Wastewater Resource Recovery Systems project. For the past few years, she led several MWRDGC 

research projects on process improvement for energy efficient nutrient removal.  She is currently 

involved in evaluation of new and innovative technologies to improve water and resource recovery 

at the MWRDGC.  

ii. Thaís Pluth, Environmental Research Scientist, MWRDGC (Utility Research and Data 

Management), evaluates technologies and processes for water resource recovery and solids 

treatment. She has extensive background in applying statistical models to understand environmental 

processes. 

iii. Matt Jurjovec, PE, Operations Manager, MWRDGC (Utility Operation), specializes in treatment 

operations, plant automation and optimization, collection systems management, process control and 

instrumentation.  Matt currently serves as Operations Manager at the Kirie WRP where he manages 

a team of operators for compliance with NPDES regulation and oversees maintenance needs at the 

facility. Matt has over 11 years of experience with the MWRDGC where he has worked in various 

roles related to wastewater treatment, stormwater collection and project development.  

iv. Dr. Xing Fang, Assistant Professor in Computer Science, ISU (Data analytics leader), specializes in 

deep learning and big data analytics. He has an extensive background in deep learning related 

applications and machine learning algorithms.  
v. Dr. Yongning Tang, Professor in Computer Science, ISU (Data Analytics Co-lead), has more than 

20 years of intelligent system design experience. Among his previous research and industrial 

collaborations, he has successfully applied various artificial intelligence technologies into 

different problem domains, such as intelligent computing for sustainable energy and environment, 

and intelligent network operations and management. He currently serves as member of the Board of 

Directors for several local and international research and educational associations. 

http://www.itk.ilstu.edu/faculty/ytang/project-pub.html 

vi. Kyle Bradley Francq, Student in Computer Science, ISU (Data Analytics), specializes in data 

analysis and computer programming. 

 

2 PLAN  
Our goal is to use 17 years of plant influent characteristic data, operational data, weather data, 6 months 

of H2S sensors data, and 10 weeks of NaOCl dose-response data, to train a series of properly selected  

machine learning models to predict and optimize the amount of chemical dose for corrosion/odor control 

without impacting downstream treatment process.  

https://protect-us.mimecast.com/s/Es5PCOYk7LhgZxBCEFrOr?domain=itk.ilstu.edu
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2.1 Problem Statement 

The James C. Kirie Water Reclamation Plant (Kirie WRP) is one of seven treatment facilities owned and 

operated by MWRDGC.  Kirie treats an average of 52 million gallons per day of municipal sewage from 

several communities in the northwestern Chicago metropolitan area. The Kirie WRP has historically 

dosed sodium hypochlorite (NaOCl) at its headwork to help curtail hydrogen sulfide (H2S) production 

and consequently odor complaints and infrastructure corrosion.  Routine NaOCl dosing at the headwork 

was suspended in May 2015 after the Kirie WRP initiated an enhanced biological phosphorus removal 

(EBPR) program to meet the anticipated phosphorus limits. The concern was that the oxidizing chemical 

could potentially reduce the volatile fatty acids (VFAs) in the influent, which are necessary in the EBPR 

process.  However, the actual impact of NaOCl on the VFA level was never assessed.  Currently, there 

is no online VFA monitoring instrument available and the waiting time for VFA laboratory results 

usually is 45 days or longer, which makes it difficult for the day-to-day decision making process for 

choosing the optimal NaOCl dosage.   

 

Since the suspension of NaOCl dosing, even 

though only a few odor complaints were 

received, the plant has observed increasing 

headworks infrastructure corrosion. Figure 1 

shows the equipment corrosion on top of the 

flow split chamber. The real concern is the 

concrete corrosion inside the chamber could be 

worse, but unobservable from outside. H2S 

spikes at the headwork structures were first 

recorded during the three weeks H2S monitoring 

in 2017. The operators of the plant prefer to 

continue the use of existing NaOCl system for 

H2S control because Kirie WRP maintains the 

chemical onsite for effluent disinfection.  The necessary infrastructure is already installed, and the plant 

is satisfied with the effect of the NaOCl dosing in the past. The challenge here is how to reduce elevated 

H2S emissions and potential corrosion issues at the Kirie WRP headworks by the use of NaOCl without 

the need for capital improvements. 

 

The generation of H2S and VFAs is impacted by many factors, including wastewater characteristics, 

plant flow, and operational conditions. H2S emission is also impacted by factors such as pH, temperature, 

and turbulence caused by pumping, among others.  Furthermore, the effectiveness of NaOCl dosing for 

H2S control is impacted by the plant influent characteristic and operational conditions.  While under-

dosing will cause insufficient corrosion control, overdosing will waste chemicals, and consume VFAs 

which could negatively impact EBPR performance.  

 

The purpose of this project is to develop a series of appropriate machine learning models based on the 

influent characteristics and plant operational conditions to predict H2S and VFAs levels and then estimate 

the optimal NaOCl dose to maintain H2S level lower than 5 ppm in the headspace of the influent flow 

split chamber, without significantly reducing the influent VFA levels. NaOCl dosing will be stopped 

when VFAs levels drop below 5 ppm in the plant influent channel.  
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2.2 Characterization of the Intelligent Water System 

The data sets used during this challenge (detailed in Appendix B) include:  

 Online Instrument Data: routine plant monitoring data, include flow, Oxidation and Reduction 

Potential (ORP), pH, wastewater temperature, and elevation data for the connecting tunnel system. 

 Water Quality Analysis Data: influent data regarding total solids (TS), suspended solids (SS), 

biochemical oxygen demand (BOD5), total phosphorus (TP), ammonia (NH3), sulfate (SO4), organic 

nitrogen (Org-N), total Kjeldahl nitrogen (TKN), and VFAs. 

 Odor and Corrosion Monitoring Data: H2S monitoring data from an OdaLog sensor.  

 Precipitation data: daily rainfall data.  

 NaOCl dose: amount of NaOCl dosed per day during the dose-response test.  

 

In the past, NaOCl was dosed to maintain an ORP in the range of 0 to +50 mV, which was believed to 

be able to control raw sewage odors and corrosion. However, as discussed above, the H2S generation 

and emission is impacted by many factors. Dosing based only on an ORP setup could cause under-

dosing, leading to insufficient corrosion control; or overdosing, which will consume VFAs and could 

negatively impact EBPR performance and increase chemical use. Appendix A shows that even with an 

ORP above 50 mV, there were H2S spikes. Additionally, when ORP was negative, the H2S concentration 

was 0 and ≤5ppm in 87% and 97% of the time, respectively. This demonstrates that dosing based only 

on ORP is not effective. Between 2010 and 2014, the average NaOCl dosage at Kirie WRP was 33,000 

gallons/year. If the system was set to dose when the H2S level was greater than 5 ppm, the chemical 

saving during that time period would have been 97%, representing a cost saving of $24,330 per year.  

 

2.3 Plan 

The plan of the project is to design, develop, and deploy a series of machine learning models to forecast 

information that can be utilized to determine the amount of NaOCl that should be applied in order to 

control the odor/corrosion at Kirie WRP headwork without negatively impacting the downstream EBPR 

performance. Our approach consists of: (1) data preprocessing and quality assurance/quality control 

(QA/QC) from February to May 2019; (2) development of Module 1 to forecast wastewater 

characteristics in May 2019; (3) development of Module 2 to predict H2S and VFAs from May to June 

2019; (4) testing the data analysis models of Modules 1 and 2 in June 2019; (5) full scale NaOCl dose-

response test to generate data for Module 3 from May to July 2019; (6) development of Module 3 to 

estimate the NaOCl optimal dosage from June to July 2019; (7) testing Module 3 in July and August 

2019; (8) developing action plans and training Kirie WRP personnel to use the developed system to 

predict their NaOCl dosage for odor/corrosion control from September 2019 to February 2020; and (9) 

full scale implementation and deployment from November 2019 to October 2020.  All models will be 

developed in Python, which is an open source free software, using free software packages and libraries 

(e.g. Tensor Flow, Keras). 

 

3 SOLUTION AND IMPLEMENTATION 
Data pre-processing and exploration are followed by training and testing of a series of supervised 

machine learning algorithms. Results will be used to determine the proper NaOCI dosage for 

odor/corrosion control. 

3.1 Implementation of Module 1  

3.1.1 Data, data preprocessing, and QA/QC 

Detailed information can be found in Appendix B.  In this module, only the daily wastewater dataset was 

used. Kirie WRP has daily wastewater data available since 1997. However, data visualization showed a 

significant wastewater characteristic change up to 2001 due to the reduction in industrial wastewater. 
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Therefore, we decide to use data from January 1, 2002 to December 31, 2018. Correlation analysis shows 

that certain wastewater parameters are positively correlated to H2S, namely TS, SS, BOD5, Org-N, TKN, 

and TP. For most of these parameters, there is a lag of 4 days to get the testing results back from the 

laboratory. For BOD5 the lag can be up to 7 days. Because of these lags, the information is not available 

for the plant daily planning. To address this problem, Module 1 was developed to forecast current 

wastewater characteristics based on the 7-day (for BOD5) and 4-day (for other parameters) lag periods. 

In this dataset, the missing values were filled by propagating the non-missing values backward along the 

time series. All the variables were normalized prior to be used in this module. Normalization is a good 

technique to use when the distribution of the data is not known or when the distribution is not Gaussian. 

In addition, data normalization can enhance the performance of various machine learning models.  

 

3.1.2 Analysis and interpretation  

Three data analysis models were developed to forecast wastewater characteristics: Recurrent Neural 

Network (RNN) using bidirectional long short-term memory, Autoregressive Integrated Moving 

Average (ARIMA), and Random Forest (RF). Table 1 compares the best results of each method through 

their corresponding Mean Absolute Error (MAE). MAE is the average difference between the predicted 

and the true values. The MAE for all three models are comparable, but the RNN model was selected for 

Module 1 to predict influent characteristics. The figures showing the actual and predicted values for 

BOD5 (which had the lowest MAE using the RNN model), NH3 (which had the highest MAE using the 

RNN model), and TS (the most important parameter predicting H2S according to the model 2) can be 

seen in Appendix C. 

 

Table 1 - Mean absolute error for different methods predicting module 1 variables  

Variable RNN  ARIMA RF 

NH3 0.06 0.07 0.04 

BOD5 0.01 0.01 0.01 

TS 0.03 0.03 0.03 

Org-N 0.02 0.03 0.03 

TP 0.02 0.03 0.03 

SS 0.02 0.02 0.03 

TKN 0.02 0.03  0.03 

SO4 0.03 0.02 0.03 

 

3.2 Implementation of Module 2 – prediction of H2S and VFA 

3.2.1 Data, data preprocessing, and QA/QC  

Detailed information can be found in Appendix B. To develop the H2S and VFA prediction module, 

three datasets are used as input: (i) water quality analysis data (TS, SS, TP, NH3, SO4, BOD5, Org-N, 

and TKN), (ii) online instrument data (flow, ORP, pH, wastewater temperature, tunnel pumping, and 

tunnel elevation), and (iii) precipitation data. The H2S and VFA data were used as labels in both the H2S 

model and the VFA model, respectively. The dataset used in the H2S model was from the two periods 

with H2S monitoring: July 14, 2017 to August 3, 2017 and from March 7 to April 30, 2019. To develop 

the VFA model, data from April 1, 2015 to May 13, 2019 were used. 

 

One of the major challenges faced during this project was the compilation of disparate data types, 

formats, and frequencies into a single data matrix with correct information. For instance, wastewater 
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variables are sampled daily, whereas the online instrument data are available both daily and every 15 

minutes. Therefore, two different solutions for predicting the H2S concentration were developed: one in 

a 15-minute interval and another in a daily interval. To predict VFA, only solution 2 is used since VFA 

is only available daily. 

 Solution 1 – 15-minute interval matrix: data only available in daily intervals were duplicated in order 

to allow them to pair with the data belonging to the other variables that were sampled every 15 

minutes.  

 Solution 2 – daily interval matrix: the daily maximum is used for variables available in 15-minute 

intervals.  

 

3.2.2 Analysis and interpretation   

Classifiers were developed to predict the H2S and VFA concentration given certain input data. The H2S 

data ranged from 0 to 140 ppm and were divided into 16 classes as shown in Appendix D. However, 

class 12 had no data and class 0 had 99% of the data. The VFA data ranged from 0 to 102 mg/L and was 

divided in 12 classes, with no data in class 9 (Appendix D). To deal with the imbalanced data, random 

oversampling was employed. This technique allows creating more data points for the classes that have a 

few points and overall improves the prediction.   

 

Two machine learning models were tested in Module 2: RF and Support Vector Machine (SVM). These 

two are chosen because they are reported as the best classifiers for  not very large datasets. For both 

models, 80% of the data are randomly selected for training and the remaining 20% of the data are selected 

for testing. Table 2 shows the results of the models developed to predict H2S and VFA. For H2S, the RF 

model had a slightly better accuracy than the SVM model when using the 15-minute data. When using 

the daily data, the SVM model performed better and had an accuracy of 97.62%. For VFA, the RF model 

was more accurate (93.39%) when compared with the performance of the SVM model (91.03%).  

 

Table 2 – Models for predicting H2S and VFA 

Output Method 
Data 

interval 

Number 

of actual 

classes 

Classes 

without 

data 

Sample size 

per class after 

oversampling 

Accuracy 

in testing 

set (%) 

Input attributes 

H2S 

RF 15 

minute 
15 12 7,503 

87.56 ORP, pH, 

temperature, flow, 

rainfall, tunnel 

elevation, tunnel 

pumping, total 

solids, SS, BOD5, 

TP, TKN, Org-N, 

NH3, SO4  

SVM 86.32 

RF 
daily 8 6 - 14 43 

85.71 

SVM 97.62 

VFA 

RF 

daily 11 9 55 

93.39 

SVM 91.03 

 

A problem faced with both the H2S and VFA predictions was the lack of data in some predicting classes, 

which could be a problem since the models cannot be trained for those classes. To solve this issue, more 

data are expected to be collected and available in those missing ranges.  Appendix E shows the order of 

importance of variables in the RF model predicting maximum daily H2S and VFA levels.  
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3.3 Implementation of Module 3 – estimation of NaOCl optimal dosage 

3.3.1 Data, data preprocessing, and QA/QC  

Detailed information can be found in Appendix B. To develop the NaOCl prediction module, five 

datasets were used as input: (1) predicted H2S data from module 2, (2) predicted VFAs data from module 

2, (3) target H2S levels, (4) target VFAs level, and (5) plant flow data. Two variables are introduced: 

delta H2S (the difference between the predicted and the target H2S level), delta VFAs (the difference 

between the predicted and the target VFAs level). The output of Module 3 is the predicted daily optimal 

NaOCl dosage, which was labeled during training using the results of the dose-response test.  
 

In order to train the learning model in Module 3, a dose-response test was conducted between 5/14/19 – 

7/25/19.  We attempted to adjust dosage twice a week, then monitor the H2S and VFAs response data, 

and modify dosage accordingly. The NaOCl dosage ranged from 0 to 238 gallon per day. The major 

challenge faced by this module is the lack of monitored VFA data. While we have daily H2S until July 

25, 2019, VFAs data were only available until May 29, 2019 due to the long laboratory waiting time for 

VFAs.  The missing monitored VFA data were estimated based on an observed correlation with the 

monitored H2S and VFAs levels (Appendix F). 

 

3.3.2 Analysis and interpretation   

Several classifiers are developed to predict the NaOCl dosage. The NaOCl dosage is divided into 24 

classes as shown in Appendix G. Two machine learning models were tested in Module 2: namely RF 

and SVM. For both models, 80% of the data are randomly selected for training and the remaining 20% 

of the data are selected for testing. Table 3 shows the results of the models developed to predict the 

NaOCl dosage. The RF model had a better accuracy than the SVM model.  89.75% of the testing data 

could accurately be predicted by the RF model. Appendix H shows the order of importance of variables 

in the RF model predicting the NaOCl dosage.  Plant flow played the major role. We will re-test Module 

3 when more monitored VFA data become available. 

 

Table 3 – Models for predicting the NaOCl dosage 

Output Model 
Data 

interval 

Number 

of actual 

classes 

Classes 

without 

data 

Sample size 

per class after 

oversampling 

Accuracy 

in testing 

set (%) 

Input attributes 

NaOCl 

Dosage 

RF 

daily 24 10 46 

89.75 
Predicted VFAs 

and H2S data from 

module 2, target 

VFAs, target H2S, 

and plant flow rate 
SVM 68.75 

 

3.4 Communication, use, and next steps 

The final algorithm for Modules 1 through 3 will be deployed according to Figure 2. The predicted water 

quality analysis data (result of Module 1), together with online instrument data and rainfall data will be 

inputs to Module 2. The predicted H2S and VFAs results of Module 2, combined with the target H2S and 

VFAs levels, wastewater flow data, will be inputted to Module 3 to predict the optimal NaOCl dosing.    
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Figure 2 – Algorithm deployment for the final solution  

 

We had sufficient data to train models in Modules 1 and 2 to provide over 90% accuracy when predicting 

H2S and VFAs.  The predicted H2S and VFA data will be used to guide the NaOCl dosing.  After training 

Module 3 with the actual VFAs data, Kirie WRP will implement this approach to automate their daily 

NaOCl dosing. In addition to the benefit of predicting the NaOCl dosage for odor/ corrosion control, the 

predicted VFAs and H2S levels can also be used to assist day-to-day operation. The predicted H2S data, 

can be used to determine how to run the three existing exhausts and one purge fans in the coarse screen 

building.  Additionally, we are evaluating an H2S device that allows for online data transfer and provides 

4-20 mA signal for control. Predicted H2S data can be used to check the sensor technology.  Furthermore, 

the VFAs predicted can be used to guide the EBPR operation, e.g., guiding mixer operation in 

fermentation zone. As part of the 2018 IWS challenge, we developed a data driven model to guide swing 

zone operation to balance EBPR and ammonia removal in Kirie WRP. Predicted VFAs this time can be 

used as an input to that model to improve its performance.  

 

The data management and prediction approaches presented here are not specific to this project. It can be 

implemented at other treatment processes and in any other utility as long as sufficient data are available 

to train the model. Kirie WRP personnel expressed the strong interest to employ this approach throughout 

their treatment process when possible.  We plan to continue working with the university, and possibly 

introducing a consultant company to combine this data driven modeling approach, together with process 

modeling, and other online monitoring and control program throughout the treatment processes at Kirie 

WRP to improve its operation efficiency and consequently reduce operational costs.  

4 CONCLUSION  
The team is challenged to handle a variety of data types and qualities. By combining appropriately 

designed data-driven machine learning approaches with the MWRDGC’s specific domain knowledge 

on wastewater characteristic and process control, the three modules are able to jointly provide one-day 

prediction of influent characteristics, and accordingly, the VFA and H2S levels to predict the optimal 

NaOCl dosage for corrosion control.  We believe these efforts are relevant and informative for every 

water resource recovery utility that need to handle dynamic influent flow and characteristic to make 

operational changes to meet the treatment target. Our work provides a concrete example of how machine 

learning can be applied using existing sensors and operational data to solve water resource recovery 

facility problems. The project also shows the benefits of consolidating interdisciplinary knowledge 

through collaboration between academia and utility research and operation teams  
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Appendix A – H2S and ORP relationship at Kirie WRP during all H2S monitoring periods 

  
 When ORP was < 0 

97% of H2S readings were ≤ 5 ppm 

87% of H2S readings were less than detection limit 
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Appendix B – Data, data pre-processing, and QA/QC descriptions 

Several QA/QC actions were taken during this challenge: (i) data visualization and spot-checks of data 

compiled from different sources; (ii) use of shared Dropbox to enable tracking of different file versions; 

(iii) comparison of H2S data from different OdaLogs; and (iv) site visit and regular meetings between 

the MWRDGC and ISU members to share information and ideas. Detailed information is provided in 

Appendix B. 

 

Variable Source Description Data pre-processing & QA/QC 

Flow, oxidization 

reduction potential 

(ORP),  pH, 

wastewater 

temperature 

(Temp), and tunnel 

elevation  

Kirie WRP's 

Distributed 

Control 

System 

(DCS) 

15-minute interval data reported 

by online instrument. All 

instruments function as a network 

with a Modbus Transmission 

Control Protocol or serial 

connection communication 

protocol and connect to the 

Kirie’s DCS for monitoring and 

data acquisition.  Sensor 

locations: pH, ORP, and Temp 

sensors are placed at raw sewage 

sampling tank;  flow meter are on 

the discharge side of raw sewage 

pumps; tunnel elevation  is taken 

upstream of the Kirie WRP in 

drop shaft using a bubble system. 

Data were checked for duplicate 

entries and out-of-range readings. 

The variable “tunnel pumping” 

was created with information 

from the tunnel elevation.  

Total solids, 

suspended solids, 

biochemical oxygen 

demand, total 

phosphorus, 

ammonia, sulfate, 

organic nitrogen, 

and total Kjeldahl 

nitrogen 

MWRDGD's 

laboratory 

information 

management 

system 

(LIMS) 

Daily 24-hour composite sample 

of influent wastewater. Data from 

01/01/2002 until 12/31/2018 were 

used in module 1. For module 2, 

data were used for the same 

period that H2S or VFA data were 

available.  

Data were checked for out-of-

range results.  

The missing values were filled by 

propagating the non-missing 

values backward along a series 

(for module 1), or interpolated 

(for module 2).  

Variables were normalized  

Precipitation 

National 

Oceanic and 

Atmospheric 

Administratio

n (NOAA)  

Daily rainfall data at O’Hare 

International Airport were 

collected from the same periods 

that H2S or VFA data were 

available 

Data were compared with rainfall 

data from different sources 

(USGS and Kirie WRP) 
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Appendix B (Continued) – Data, data pre-processing, and QA/QC descriptions  

Variable Source Description Data pre-processing & QA/QC 

Volatile Fatty 

Acids (VFAs) 

MWRDGD's 

LIMS 

Twice a week grab sample of 

influent wastewater from 

influent channel available from 

March 2 2014 to May 29 2019. 

Samples testing for VFA were 

collected in irregular 

frequencies. In module 2, VFA 

models were trained with data 

from the period without NaOCl 

dosing (prior to May 14 2019). 

Data were checked for out-of-

range results. 

The missing monitored VFA data 

were estimated based on an 

observed correlation with the H2S 

and VFAs levels (Appendix F). 

Hydrogen Sulfide 

(H2S) 

OdaLog L2 

high range gas 

logger 

15-minute interval data 

manually downloaded weekly. 

OdaLog was placed temporarily 

at the headspace of the influent 

flow split box at the Kirie WRP 

during two periods: 

07/14/2017-08/03/17 and 

03/07/19-07/25/19.  

Two side by side OdaLogs were 

installed and readings compared 

for three weeks. 

Day-level summary of H2S 

readings was compiled using the 

maximum reading of the day.  

NaOCl dosage for 

the dose response 

test 

Kirie WRP 

Data from dose-response test 

carried out between 5/14/19 – 

7/25/19.  We attempted to 

adjust dosage twice a week, 

monitor H2S and VFA response 

data, and then modify dosage 

accordingly.  Dosage data were 

used as label in module 3 and 

ranged between 0 gpd and 238 

gpd  

Data were checked for out-of-

range results. 
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Appendix C – Forecast of water quality analysis data – Module 1  
 

Figure C1 – Predicted and actual BOD5 data  
 

 

 

Figure C2 – Predicted and actual ammonia data  
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Figure C3 – Predicted and actual total solids data  
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Appendix D – H2S and VFAs classes being predicted in module 2 

 

Class 

Number 

H2S concentration range 

(ppm) 

VFA concentration 

range (mg/L) 

0 0 [0, 5] 

1 [1, 5] [6, 10] 

2 [6, 10] [11, 20] 

3 [11, 20] [21, 30] 

4 [21, 30] [31, 40] 

5 [31, 40] [41, 50] 

6 [41, 50] [51, 60] 

7 [51, 60] [61, 70] 

8 [61, 70] [71, 80] 

9 [71, 80]  [81, 90]* 

10 [81, 90] [91, 100] 

11 [91, 100] [101, 110] 

12   [101, 110]*   

13 [111, 120]   

14 [121, 130]   

15 [131, 140]   
*class with no data 
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Appendix E – Order of importance of variables in the Random Forest models predicting maximum 

daily H2S and VFAs levels 

 

Figure E.1 – Order of importance of variables in the RF model (Module 2) predicting maximum 

daily H2S 

 

 

Figure E.2 – Order of importance of variables in the RF model (Module 2) predicting VFAs level 
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Appendix F – Correlation between VFAs levels and H2S levels  
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Appendix G – NaOCl classes being predicted in module 3 
 

Classes NaOCl dosage (gallons/day) 

0 0 

1 [1,10]* 

2 [11,20]* 

3 [21,30]* 

4 [31,40] 

5 [41,50] 

6 [51,60]* 

7 [61,70] 

8 [71,80] 

9 [81,90]* 

10 [91,100] 

11  [101,110]* 

12 [111,120] 

13 [121,130] 

14 [131,140]* 

15 [141,150] 

16 [151,160] 

17 [161,170]* 

18 [171,180] 

19 [181,190]* 

20 [191,200] 

21 [201,210] 

22 [211,220]* 

23 221and above 
                         *class with no data 
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Appendix H – Order of importance of variables in the RF model (Module 3) predicting NaOCl 

dosage 
 

 

 

Note: delta H2S is the difference between the predicted H2S level vs the target H2S level and delta VFAs 

is the difference between the predicted VFAs level vs the target VFAs level 
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