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1. Background and Problem Statement 
Efficient control of chlorination and sodium hypochlorite dosage is challenging as it 
requires a balanced tradeoff between operational costs and effluent quality. 
Minimization of sodium hypochlorite dosage could reduce operational costs but 
potentially lead to insufficient chlorine residual levels in the effluent. On the other 
hand, although an elevated sodium hypochlorite dosage rate would ensure sufficient 
chlorine residual in the effluent, it will significantly increase operational costs related 
to sodium hypochlorite consumption. A new chlorine dose controller for effluent 
disinfection is desired at the HRSD Nansemond Treatment Plant to minimize sodium 
hypochlorite dosage to the degree possible while ensuring sufficient chlorine residual 
levels to reliably meet permitted disinfection requirements. The new controller will 
incorporate a feedforward element into the existing feedback controller. This 
feedforward element will utilize a hybrid modeling approach combining a 
mechanistic chlorine decay model and a data-driven model to predict mechanistic 
model errors. This novel approach will provide the facility with a robust system for 
chemical dosing that simultaneously minimizes costs and greenhouse gas emissions 
(GHGs) associated with the production and hauling of sodium hypochlorite. 

1.1 Why a Hybrid Model Approach? 
Although artificial intelligence (AI) and machine learning (ML) models provide 
exceptionally high predictive capabilities, their industrial-scale adoption is more 
justifiable if the underlying mechanisms involved cannot be fully explained by 
mechanistic insights. Mechanistic models have been around for decades and can 
provide real-time insights into the prediction process in a transparent manner (i.e., a 
“white box” as opposed to a “black box”). Therefore, if a wastewater process can 
already be characterized by mechanistic models, a full-scale replacement of the 
mechanistic model with an AI/ML tool may not be fully justified due to the 
complexities involved with AI/ML models including model development, deployment, 
and maintenance. However, a promising application of AI/ML in wastewater 
treatment processes with industrially accepted mechanistic models is to use the 
predictive capabilities of AI/ML models for mechanistic model error correction, and 
therefore, increase the reliability of model predictive control (MPC) practices for full-
scale water resource recovery facility (WRRF) operations.  



 

  

5 A HYBRID INTELLIGENT CONTROL SYSTEM TO OPTIMIZE CHLORINATION PROCESSES: AN HRSD CASE STUDY  

 

The selected hybrid model approach in this case study allows for simultaneous 
utilization of a widely used first-order parallel decay mechanistic model for the 
prediction of chlorination requirements, and an ML model to correct the mechanistic 
model errors as the backbone of a reliable control system. Additionally, the predictive 
nature of the developed ML model allows the operators to prepare for the necessary 
adjustments in the control system and optimize the plant’s operational costs and 
effluent quality.  

2. Project Outline 
The project outline for the successful development/deployment of the hybrid MPC 
tool is summarized below: 

1. Optimize the chlorination process to minimize sodium hypochlorite dosage while 
maintaining satisfactory effluent chlorine residual levels.  

2. Develop a parallel first-order mechanistic model with a rolling window to 
frequently update the model parameters and predict the decay rate. 

3. Develop advanced time-series forecasting ML models to predict and correct the 
mechanistic model error and return an updated chorine decay rate and sodium 
hypochlorite dosage. 

4. Deploy the developed multi-step tool for full-scale operational control and report 
the savings associated with sodium hypochlorite operational costs, GHGs, and 
monitor the effluent quality.   

3. Solution 

3.1 Introduction 
Disinfection of public water supplies has been one of the greatest and most 
successful examples of human intervention in promoting public health and 
eliminating waterborne diseases caused by microbial pathogens.1 One of the most 
widely used disinfection methods is chlorination which has been utilized on an 
industrial scale for decades. Disinfection in the context of WRRF operations is 
especially important because the final discharge is typically released to natural 
water bodies and could further be used for irrigation and recreational   purposes 
which may lead to direct or indirect human contact with discharged effluent.1 Typical 
forms of chlorine compounds used in WRRFs are elemental chlorine, hypochlorite, 
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and chlorine dioxide; and, each one of them has its own operational advantages and 
disadvantages.2 

The Nansemond plant uses sodium hypochlorite as the disinfecting agent which 
is in liquid form and forms hypochlorous acid and sodium hydroxide when it reacts 
with water. Sodium hypochlorite dosing requirements are governed by chlorine 
demand which can be defined as the difference between the added chlorine and 
residual chlorine leaving the plant after a certain period of contact time.4 This 
demand results from organic and inorganic compounds in wastewater which react 
with added chlorine. Since these reactants and the kinetics associated with these 
reactants are variable, the chlorine demand is not constant. Chlorine reacting with 
organic compounds present in wastewater form chlororganic compounds which 
have a limited disinfection capacity; while chlorine reacting with ammonia forms 
chloramine (i.e., monochloramine, dichloramine, and trichloramine), a strong 
disinfecting agent.3 

 

Figure 1. Overview of the chlorine optimization MPC deployment process using a 
mechanistic and AI/ML hybrid modeling approach. 

Despite an understanding of chlorine demand mechanisms and the availability 
of mechanistic models for predicting chlorine residuals6, the application of these 
models to chlorine dose control is limited in practice. This is likely because there is 
substantial heterogeneity in effluent composition and operating conditions which 
introduce an unacceptable degree of error to the model predicted chlorine demand. 
This error could lead to an under-dosing of chlorine and permit violations. This project 
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aims to address this issue by utilizing a hybrid AI/ML model to correct the errors 
associated with the chlorine decay mechanistic model in real-time and optimize 
chlorine consumption using an MPC system (Figure 1). Following the deployment of 
this controller, operators at the HRSD Nansemond plant will be able to optimize the 
chlorine dosage MPC within an intelligent water framework to reduce dosages, and 
associated GHG emissions and operational costs, while consistently meeting 
disinfection requirements.  

3.2 Mechanistic Model Development – Chlorine Decay 
In an effort to systematically study the chlorine demand kinetics from real 
wastewater, a parallel first-order decay model was proposed and successfully 
demonstrated an adequate fit to real-world data according to Equation 1:4 

𝑪𝑪(𝒕𝒕) = (𝑪𝑪𝟎𝟎 × 𝒙𝒙 × 𝒆𝒆−𝒌𝒌𝟏𝟏×𝒕𝒕) + (𝑪𝑪𝟎𝟎 × (𝟏𝟏 − 𝒙𝒙) × 𝒆𝒆−𝒌𝒌𝟐𝟐×𝒕𝒕) Equation 1 

Where C(t) and C0 are the chlorine concentrations at time t and time 0, respectively, 
K1 and K2 are the decay constants for different chlorine decay pathways, where t is the 
chlorine contact reaction time, x (limited between 0 and 1) is the fraction of the initial 
chlorine concentration that decays with the K1 rate constant, and (1-x) is the fraction 
of the initial chlorine concentration that decays with the K2 rate constant.6 The two 
reaction rate constants allow for differentiation of the slow and fast reacting portion 
of chlorine compounds. To account for the variations in parameter fitting values 
across different operational conditions, this mechanistic model was fitted over data 
collected from the HRSD Nansemond treatment plant using a real-time parameter 
fitting approach with a rolling two-week moving window.  

The plant uses two chlorine contact tanks (CCTs) for disinfection. Therefore, this 
approach included calculating chlorine decay based on the dosed sodium 
hypochlorite and the measured chlorine concentration one CCT hydraulic retention 
time (HRT) into the future (approximately 30 minutes); this approach included 
calculating the difference between the initially dosed C0 and the mechanics model’s 
C0 concentration given a Ct measurement at each time interval. The parameter fitting 
rolling window then moved over the chlorine decay data and used the previous two 
weeks of recorded data to generate a new set of fitting parameters every day. With 
this approach, a new mechanistic model with updated fitting parameters was 
obtained daily which ensured the accuracy of model parameters. Instead of using a 
typical curve fitting method for parameter fitting, the Nelder-Mead method was used 
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to find the best model fitting parameters. Unlike curve fitting that uses least squares 
optimization and is sensitive to undefined or noisy derivatives, Nelder-Mead relies on 
a simplex-based optimization algorithm which does not require derivative 
computations, making it ideal for non-smooth functions.5 Using fitted Nelder-Mead 
parameters, the mechanistic model predictions for chlorine concentration were 
compared with the recorded values (Figure 2). 

 

Figure 2.1 Recorded chlorine residual vs. predicted values using a parallel first-order 
decay mechanistic model. The overall trend in January 2024 as a representative 
period (A) and its last week (B) demonstrate clear daily patterns.   

The mechanistic model predictions closely followed the measured chlorine 
concentrations by chlorine sensors with a Root Mean Squared Error (RMSE) of 1.94 and 
a Mean Absolute Error (MAE) of 1.21 mg/L on the test dataset (Figure 2A). This close 
alignment indicated that the first-order parallel decay model was able to predict 

 
1 Figures with technical data were created using the Arial font. 
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chlorination requirements by accounting for both fast and slow decaying portions of 
chlorine compounds present in wastewater. Although chlorination requirement 
patterns were successfully captured by the model, a consistent model error was 
observed (Figure 2). This deviation from the recorded Ct values downstream was 
clearer when analyzing the individual daily patterns (Figure 2B). The observed error 
limits the ability of the MPC using only the mechanistic model to minimize sodium 
hypochlorite consumption while ensuring compliance with effluent disinfection and 
chlorine residual regulations. The next section will highlight how an AI/ML-based 
component to this control strategy allows the plant to predict and correct the daily 
mechanistic model error, thereby further optimizing its sodium hypochlorite dosage 
rates, maximizing operational cost and GHG emission savings.  

3.3 Predictive AI/ML Models: Neural Prophet 
Chlorination requirements at the HRSD Nansemond plant are dominated by 
repeating diurnal patterns (Figure 2). Therefore, the most suitable approach is to use 
an advanced time-series forecasting model that can uncover and predict these 
repeating patterns. One of the most promising time-series forecasting models is 
Facebook (FB) Prophet, which is an additive algorithm that models trend, seasonality, 
and holiday effects and can decompose any time-series data to reveal its underlying 
repeating patterns.6 Despite its advantages, FB Prophet is a statistical model that has 
a limited predictive performance compared to artificial neural networks (ANNs) and 
does not incorporate autoregressive features into model scenarios where immediate 
past is a strong predictor of future values. To address these issues, Neural Prophet 
was developed as an extension to FB Prophet to incorporate autoregressive features 
in addition to utilizing ANN layers.7 This unique combination allows a Neural Prophet 
model to uncover highly nonlinear and complex interactions within a time-series 
data while simultaneously using the immediate past values to predict into the future 
through autoregression.  

Therefore, Neural Prophet was selected as the first algorithm to predict the 
chlorination mechanistic model errors (Figure 3). The date range for the raw data 
used for model development was from November 2022 through February 2024. The 
data was recorded with a 10-minute resolution, and 80% of the overall dataset was 
used for training while the remaining 20% was used for the test period. The Neural 
Prophet model in this study utilized a deep 4-layer neural network architecture with 



 

  

10 A HYBRID INTELLIGENT CONTROL SYSTEM TO OPTIMIZE CHLORINATION PROCESSES: AN HRSD CASE STUDY  

 

12 lagged steps as the autoregression features (i.e., the past 2 hours of data) with a 
prediction horizon of 6 steps (i.e., 60 minutes into the future). Appropriate batch size 
and learning rate values were optimized by trial and error.  

A mechanistic approach would involve predicting the chlorine concentration at 
a desired time interval (e.g., one HRT into the future) given a selected sodium 
hypochlorite dosing rate and Co concentration. Following this approach, at each time 
interval, there was a difference between the mechanistically predicted Ct 
concentration given a selected C0, and the measured Ct concentration approximately 
one HRT into the future.  

 

Figure 3. Neural prophet predictions 1 HRT into the future on the overall test data (A) 
and daily C0 concentration error trends over a selected representative period (B).  

Through back-calculation with the mechanistic chlorine decay fraction, it was 
possible to determine what C0 should have been to achieve the desired Ct 

concentration, and therefore, correcting the initial sodium hypochlorite dose. 
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Therefore, the Neural Prophet model was trained to predict the mechanistic model’s 
error in selecting the correct C0 concentration at each 10-minute interval. Once this 
error between C0 concentrations is accurately predicted, operators can adjust the 
target chlorine residual (Ct) concentration accordingly to optimize MPC performance 
for minimal dose and compliance risk.  

The RMSE and MAE values were 0.19, 0.36 mg/L for the training dataset, and 0.68, 
0.40 mg/L for the test dataset, respectively. The performance metrics demonstrated 
that the model had a high predictive performance both on the training and test 
datasets (Figure 3A). Despite this high predictive performance on the test dataset, 
visual inspection of the predictions indicated that when the chlorination 
requirements and the subsequent mechanistic model errors went through sudden 
peaks or dips (e.g., in early morning hours), the model made the predictions with a 
slight delay (Figure 3B). This delay could have either been caused by a lack of enough 
training data around peaks/dips to capture these sudden variation events or reflect 
the model’s limitations in response to sudden peaks/dips in data. Although the 
overall accuracy of the Neural Prophet model to correct the mechanistic model’s 
prediction was high, another advanced time-series forecasting approach was 
evaluated to determine the best modeling strategy for this project to minimize the 
prediction delay. The final evaluated state-of-the-art approach was based on 
Transformers which are the building blocks of large language models (LLMs) 
including ChatGPT and have recently gained attention for time-series forecasting 
due to their ability in modeling long-range and sequential dependencies using self-
attention mechanisms.8 

3.4 Predictive AI/ML Models: Transformers 
The emergence of Transformers as a new deep learning architecture revolutionized 
Natural Language Processing which advanced generative AI.9  Unlike Recurrent 
Neural Networks (RNNs), which processed sequential data in a recursive order to 
observe temporal patterns, Transformers use the self-attention method to capture 
the temporal patterns between all data points in a sequence. It is important to note 
that the self-attention method ignores the chronological order of the data points in a 
sequence; therefore, positional encoding is implemented in Transformers to keep 
track of the temporal order after extracting the attention scores. Overall, the 
encapsulation of positional encoding, the self-attention method, and feedforward 
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neural networks (FNNs) in an encoder-decoder architecture forms a Transformer 
block (Figure 4).10 The employment of FNNs reduces the training computational cost, 
allowing for the training of large Transformer-based models on larger datasets and 
very long sequences.11 

 

Figure 4.10 Graphical representation of a Transformer architecture.2 
The advantages of Transformers led to the formation of famous LLMs like 

ChatGPT and Llama. In this context, Transformers consider each sentence as a word 
sequence, finding the temporal patterns between words regardless of the 
chronological word order in the encoder part. This information is further used in the 

 
2 Figure sourced from reference 10. 
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decoder part to carry out language tasks like machine translation or text generation 
in a generative AI chatbot based on previous sentences.12,13 By taking advantage of 
this perspective, Transformers were evaluated as the second strategy for predicting 
the mechanistic model’s error in selecting the correct C0 concentration.  

 

Figure 5. Transformer predictions 1 HRT into the future on the overall test data (A) and 
daily C0 concentration error trends over a selected representative period (B). 

In the context of Transformers and their role in LLMs, sequential chlorine 
requirement predictions ordered in time were regarded in a similar manner as 
individual words ordered in a sentence. The combination of positional encoding and 
the self-attention method not only captured the seasonality and trend of the 
mechanistic model’s error but also observed the contextual essence of the 
chlorination process, leading to even more accurate predictions with less delay. The 
Transformer proposed in this study was trained on the dataset produced by the 
Nelder-Mead algorithm that contained updated mechanistic model predictions and 
back-calculated C0 concentrations for each day in 10-minute frequencies. The 
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dataset was split into 70% training, 10% validation, and 20% testing purposes. 
Benefiting from long sequence learning, the Transformer model took 144 previous 
steps as the historical sequence (i.e., the past day) with a prediction horizon of 3 steps 
(i.e., 30 minutes into the future, 1 HRT ahead). Furthermore, the architecture of the 
proposed Transformer model contained 4 encoder and 4 decoder layers. The FNNs in 
the Transformer were activated by the Gaussian Error Linear Unit (GELU) function 
followed by dropout layers to prevent overfitting. Furthermore, using hyperparameter 
optimization, an optimal batch size and learning rate were used for training. 

The RMSE and MAE values were 0.42, 0.28 mg/L for the training dataset, and 0.60, 
0.33 mg/L for the test dataset, respectively. Similar to the Neural Prophet model, these 
metrics demonstrated an exceptionally high predictive performance by the 
Transformer model (Figure 5A). Additionally, visual inspection of model predictions 
in the test dataset indicated minimal prediction delay compared to the Prophet 
model (Figure 5B). This emphasized the capability of Transformers in modeling the 
dynamic nature of C0 concentration error trends and reflecting it in the hybrid model. 
Training Transformer models is known to be a data-intensive task and the current 
training dataset with around 50,000 datapoints is relatively small. It is safe to assume 
that if more data were available (e.g., several years instead of 2), an even more 
accurate Transformer model   However, it should be noted that the self-attention 
method is computationally intensive, which creates a trade-off between accuracy 
and training time — a crucial consideration for MPC deployment. 

3.5 Dashboard Integration 
A fully functional online dashboard was created using Streamlit in Python to test the 
real-time performance of the hybrid chlorination control system (Figure 6). The 
online dashboard integrates the individual components of this solution by i) 
outputting the daily chlorine decay function parameters using the last two weeks of 
data, ii) creating live figures representing the recorded/predicted Ct concentrations 
and corrected C0 concentrations using the mechanistic and ML models, and iii) 
outputting the current sodium hypochlorite dosage rates vs. the mechanistic and ML-
corrected dosage rates. Figure 6 represents the real-time performance of this control 
system by depicting the model predictions (blue lines) compared with the recorded 
values in the test dataset (red lines). One of the main observations during this study 
was related to the impact of sudden chlorine demand spikes on the performance of 
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the predictive models. When the system was relatively stable, although the 1-step-
ahead predictions from the mechanistic model were relatively close with the 
recorded C0 values in the test dataset, the ML models outperformed the mechanistic 
model predictions and offered much more accurate predictions. On the other hand, 
during spiked chlorine demand events when the system was going through a 
disturbance, the mechanistic model clearly deviated from the recorded C0 values, but 
the ML models still provided accurate predictions with a significant improvement 
(Figure 6). This close alignment between the ML-predicted and recorded C0 values 
indicated a more robust control system during both stable and spiked chlorine 
demand conditions, and therefore, would’ve led to more savings in sodium 
hypochlorite consumption. 

 

Figure 6. Online dashboard demonstrating the real-time performance of the models 
under normal and spiked chlorine demand conditions. 
 The observed improvement in the prediction performance was consistent with 
the RMSE and MAE values obtained from the different models as discussed in the 
previous sections. To fully capture sudden variation dynamics, ML models and 
especially Transformers need to have enough training data to observe such peak 
events on multiple occasions so they can better predict these events on unseen data. 
This observation indicates that such predictive models become more and more 
accurate as their deployment process goes on where they have access to more 
training data. Therefore, it is possible to further increase the performance of the 
control system during disturbance events by i) having access to more training data 
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that represent irregular spikes in chlorine demand and ii) developing a separate 
disturbance detection model to predict the irregular spikes in advance and select the 
best control strategies accordingly. The integrated dashboard demonstrates how 
advance AI/ML models can correct mechanistic model predictions and provide 
access to a sophisticated control system with a meaningful potential for significant 
savings in chemical consumption and GHG emissions while maintaining satisfactory 
effluent quality.  

4. Conclusions and Next Steps 
This case study demonstrated a novel application of advanced AI/ML models to 
support and complement the prediction accuracy of mechanistic models that have 
been widely used in the industry. Using AI/ML models as a prediction correction tool 
for the chlorination mechanistic model can lead to a more efficient and robust 
chlorine dosing operation at the HRSD Nansemond plant. This strategy helps the plant 
reduce its sodium hypochlorite consumption and increase its resiliency in meeting 
effluent chlorine residual permit requirements. Some key takeaway points are 
summarized below: 

• What are the main benefits to utilities? Given the complexities and dynamic 
nature of disinfection processes using chlorination, a feedback control system 
may fail to provide accurate adjustments in a timely manner. The main benefit 
of using AI/ML models as a predictive monitoring tool for chlorination 
processes is to use them as a feedforward component in the control system to 
account for unexpected variations in chlorine demand. A feedback-
feedforward control strategy optimizes resource use while ensuring regulatory 
compliance with chlorine residual levels in the effluent. 

• Risk-based control and probabilistic modeling: The HRSD Nansemond plant 
aims to ideally maintain a setpoint of 0.5 mg/L chlorine residual in its effluent. 
Chlorine residuals below 0.5 mg/L are regarded as exceptions, and levels 
below 0.1 mg/L are regarded as violations. Therefore, there is a tradeoff 
between minimizing sodium hypochlorite usage and maintaining adequate 
effluent chlorine residual levels. In a risk-based approach with probabilistic 
modeling, model predictions would be presented within a confidence interval 
with lower and higher probability bands. In this scenario, at the beginning of 
the month when higher exceptions are allowed, operators would adjust the 
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dosing rate following the lower band of the model prediction’s confidence 
interval; while towards the end of the month with lower exceptions allowed, 
they would take a more conservative approach and move on the higher end of 
the model prediction’s confidence interval. Implementing this approach is one 
of the additional planned steps in the deployment process. 

• Identification of irregular spikes in chlorine demand: Results obtained from this 
project indicated that the prediction of accurate dosing requirements would 
become more challenging when there was a sudden spike in chlorine demand. 
Therefore, predicting when the plant is going through a sudden chlorine 
demand spike is crucial to successfully deploy this hybrid control approach. To 
achieve this capability, a classification model would be trained using water 
quality parameters collected from the plant’s SCADA system to act as a 
“disturbance” model to offer protections against sudden spikes in chlorine 
demand and identify regions where model predictions could be negatively 
impacted.  

The final step to fully implement this approach is under development and focuses on 
the integration of all these individual components in a monitoring and control 
framework that is both easy to use and meets the data security considerations at the 
plant.  The overarching goal is to create a user-friendly interface for plant operators 
to efficiently optimize the chlorination process at the HRSD Nansemond Treatment 
Plant.  
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